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Abstract 
 

The new trend in semantic segmentation of computer vision is to utilize them in embedded 

systems which have limited computational ability and storage space. To achieve that, the model 

must be light enough. This project designs a lightweight network model to finish the semantic 

segmentation task in remote sensing imagery with high accuracy. In the report, the project first 

review the state-of-the-art deep neural models of semantic segmentation and lightweight 

models. Subsequently, The project presents a new cost-efficient semantic segmentation 

framework by using pointwise group, depthwise convolutions and channel shuffle with shortcut 

blocks to decrease memory and computation cost greatly. After that, conditional random field  

(CRF) method is used to improve the accuracy. Finally, the project measures the model on two 

Remote Sensing datasets: Vaihingen and Potsdam. Then compare the results with U-Net, 

MobileNet_Fully Convolutional Network(Mobile_FCN). The results indicate that the new 

architecture in this project achieves Fully Convolutional Network(FCN) level overall accuracy: 

87.1% in Vaihingen dataset, while maintains less memory and computation budget than other 

lightweight_FCN based models. 

Key words: semantic segmentation; remote sensing; lightweight model; U-Net; MobileNet; 
deep learning 
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Chapter 1: Introduction 

1.1 Project purpose 

In recent years, a large number of sematic segmentation methods have been proposed to classify 

very-high-resolution (VHR) remotely sensed imagery in land-use/land-cover (LULC) 

applications (1–7). To make the whole model to be trained end-to-end, the deep fully 

convolutional neural networks (FCNs) based semantic segmentation framework was proposed 

afterward (8,9,9–12). The VHR remotely sensed images can be segmented and classified 

simultaneously by a lne-tuned end-to-end FCN model. 

Many FCN-based frameworks achieve higher overall accuracy than traditional pixel-based 

image classification (PBIC) (13) and object-based image classification (OBIC, or GeoOBIA) 

(14–16) methods for remote sensing images semantic segmentation, and have been successfully 

applied to LULC (17), object detection (18), urban mapping (19), etc. 

However, this kind of structure follows and failures which most DCNN have. For instance, 

because of the time consumed for computational cost and the size of the model, some embedded 

applications with limited computational ability and storage space can hardly use these models. 

Especially for Satellite systems to do semantic segmentation. 

In most situation, pictures taken from satellites will be transferred to ground control systems. 

However, satellite systems are not able to distinguish between useful and useless( have no 

object) pictures. So all pictures will be transferred to ground. It will take people a lot of money 

during the transmission process. Therefore, The program in this paper is to deal with these 

problems by designing a lightweight models which can be utilized in semantic segmentation. 

As a result, satellite systems can make some prejudgment, then just transfer the useful pictures. 

1.2 Project Description 

1.2.1  The main work 

The program develop a new cost-efficient architecture for remote sensing imagery, which is a 

variant of FCN, to address the expensive cost in remote sensing imagery. Moreover, this project 

designed a series of comparative experiments with U-Net (20), Mobile_FCN and trained them 

on ISPRS semantic segmentation dataset without using Digital Surface Model( DSM).  
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1.2.2 The major innovation 

• The project introduces new lightweight semantic segmentation framework which has 

better performance than other lightweight models. 

• The project compares many lightweight methods and analysis the pros and cons of them. 

Chapter 2: Background 

2.1 semantic segmentation 

2.1.1 The development of CNN  

Convolutional Neural Network (CNN) is a common deep learning architecture inspired by 

biological natural visual cognitive mechanisms. In the 1990s, LeCun et al. and others published 

papers that established the modern structure of CNN and later refined it. They designed a multi-

layered artificial neural network called LeNet-5 to classify handwritten numbers (21). The 

structure of LeNet-5 is shown in the figure 1. CNN can derive the effective representation of 

the original image, which enables CNN to recognize the laws above the vision directly from 

the original pixels with very little pre-processing. However, due to the lack of large-scale 

training data at the time, the computing power of the computer could not keep up. LeNet-5's 

processing of complex problems was not satisfactory. 

 
 

Fig. 1. Architecture of LeNet-5(21). 
 
 
Since 2006, many methods have been designed to overcome the difficulty of training deep CNN. 

Among them, the most famous is Krizhevsky et al. proposed a classic CNN structure and made 

a major breakthrough in image recognition tasks. The overall framework for its approach is 

called AlexNet(22). Its structure is similar to that of LeNet-5, but it is deeper. 

After AlexNet's success, the researchers proposed other improvements, the most famous of 

which are ZFNet (23), VGGNet (24), GoogleNet (25) and ResNet (26). One direction of CNN 

development is that the number of layers has become more. For example, ILSVRC 2015 
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champion ResNet (26) is more than 20 times that of AlexNet (22) and more than 8 times that 

of VGGNet (24). By increasing the depth, the network can more closely represent the deep 

information with the added nonlinear structure, which can better characterize the image. 

However, these methods also increase the overall complexity of the network, making the 

network difficult to optimize and easy to overfit. 

In recent years, the CNN model has been used as the basis for various image tasks, such as 

image classification, target detection and semantic segmentation. 

2.1.2 FCN 

Before deep learning was applied to the field of computer vision, researchers generally used 

texture primitive forest (Texton Forest (27)) or random forest (Random Forest (28)) methods to 

construct classifiers for semantic segmentation. 

In 2014, Fully Convolutional Networks (FCN), proposed by Long et al (29). at the University 

of California at Berkeley, extended the original CNN structure to enable intensive prediction 

without a fully connected layer. The proposed structure allows the segmentation map to 

generate images of any size, and also improves the processing speed compared to the image 

block classification method. Later, almost all recent research on semantic segmentation adopted 

this structure. Figure 1 shows the basic structure of the FCN. 

 
Fig. 2. Architecture of FCN (29). 

 
However, there is a problem with this fully connected layer structure: the existence of a pooled 

layer. The pooling layer can increase the receptive field of the upper convolution kernel, 

however, it discards part of the location information while aggregating the background. The 

semantic segmentation method requires precise adjustment of the category map, so the position 
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information discarded in the pooling layer needs to be retained. In this regard, the researchers 

proposed two different forms of structure to solve this problem. 

2.1.3 U-Net 

The first method is an encoder-decoder structure. Among them, the encoder uses the pooling 

layer to gradually reduce the spatial dimension of the input data, and the decoder gradually 

recovers the details of the target and the corresponding spatial dimension through a network 

layer such as a deconvolution layer. It is worth noting that there is usually a direct information 

connection between the encoder and the decoder to help the decoder better recover the target 

details. In this method, a typical structure is a U-Net (20) which is showed as figure 3. 

 

 
Fig. 3. Architecture of U-Net (20). 

 
 

2.1.4 Dilated Convolutions 

The second method uses a structure called hole convolution. This structure was first proposed 

by Yu, Fisher et al (30), which replaced the pooled layer structure in the middle of the FCN 

with the structure shown in Fig. 4, and removed the pooled layer structure. The advantage of 

dilated is that without the pooling operation, the receptive field is increased, and each 

convolution output contains a large range of information. 
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Figure 4: The detail of Dilated Convolutions: systematic dilation supports exponential 

expansion of the receptive field without loss of resolution or coverage, (a) F1 is produced from 

F0 by a 1-dilated convolution; each element in F1 has a receptive field of 3×3, (b) F2 is 

produced from F1 by a 2-dilated convolution; each element in F2 has a receptive field of 7×7, 

(c) F3 is produced from F2 by a 4-dilated convolution; each element in F3 has a receptive field 

of 15×15 (30). 

2.2 Lightweight Model 

The deep neural network model is widely used in machine vision tasks such as image 

classification and object detection, and has achieved great success. However, due to storage 

space and power consumption limitations, the storage and computation of neural network 

models on embedded devices remains a huge challenge. 

In order to solve this problem, artificially designing a lightweight neural network model is a 

common method. Currently, there are four types of state-of-the-art lightweight neural network 

models: MobileNet (31), MobileNetV2 (32), ShuffleNet(33) and ShuffleNetV2(34). They are 

lightweighted by special convolution methods and structures. 

2.2.1 MobileNet and MobileNet V2 

MobileNetV1 is Google's first convolutional neural network for small, computationally 

intensive, mobile devices. The reason why MobileNetV1 is so lightweight is that it replaces the 

standard convolution with Depthwise Separable Convolution (31) and uses the width multiply 

(31) to reduce the amount of parameters.  

MobileNetV1 is designed with reference to the traditional VGG Net chain architecture to 

increase the network depth by stacking convolution layers to improve recognition accuracy. But 

there is a problem when stacking too many convolutions, which is the gradient of Vanishing. 

However, the residual network makes it easier for information to flow between layers, which 
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provides feature reuse in forward propagation while mitigating the disappearance of gradient 

signals during backpropagation. So the improved version of MobileNet V2 adds skip 

connection structure. The basic blocks of ResNet and Mobilenet V1 are improved as follows: 

l Continue to use the deep separable convolution of Mobilenet V1 to reduce the amount of 

convolution calculations. 

l Increase the skip connection to provide feature reuse for forward propagation. 

l Inverted residual block structure is adopted. The structure uses Point wise 

l The feature map is upgraded by convolution, and then the ReLU is connected to the feature 

map after the dimension is upgraded to reduce the damage of the feature by ReLU. 

Figure 5,6 shows the different between MobileNet and MobileNet V2 

 

 

Fig. 5. Architecture of MobileNet (31). 
 

 

 

Fig. 6. Architecture of MobileNetV2(34). 
 

 

2.2.2 ShuffleNet and ShuffleNet V2 

ShuffleNet is a lightweight network structure proposed by Face++. The main idea is to improve 

ResNet with Group convolution(33) and Channel shuffle(33), which can be regarded as a 

compressed version of ResNet.  

The common feature of Mobile V1&V2, shuffleNet V1 is that FLOPS is used as the evaluation 

standard of the model, but each condition needs to be met in the mobile terminal device: fewer 

Input Operator t c n s

2242 × 3 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1x1 - 1280 1 1
72 × 1280 avgpool 7x7 - - 1 -

1× 1× 1280 conv2d 1x1 - k -

Table 2: MobileNetV2 : Each line describes a sequence
of 1 or more identical (modulo stride) layers, repeated
n times. All layers in the same sequence have the same
number c of output channels. The first layer of each
sequence has a stride s and all others use stride 1. All
spatial convolutions use 3 × 3 kernels. The expansion
factor t is always applied to the input size as described
in Table 1.

Size MobileNetV1 MobileNetV2 ShuffleNet
(2x,g=3)

112x112 1/O(1) 1/O(1) 1/O(1)
56x56 128/800 32/200 48/300
28x28 256/400 64/100 400/600K
14x14 512/200 160/62 800/310

7x7 1024/199 320/32 1600/156
1x1 1024/2 1280/2 1600/3
max 800K 200K 600K

Table 3: The max number of channels/memory (in
Kb) that needs to be materialized at each spatial res-
olution for different architectures. We assume 16-bit
floats for activations. For ShuffleNet, we use 2x, g =
3 that matches the performance of MobileNetV1 and
MobileNetV2. For the first layer of MobileNetV2 and
ShuffleNet we can employ the trick described in Sec-
tion 5 to reduce memory requirement. Even though
ShuffleNet employs bottlenecks elsewhere, the non-
bottleneck tensors still need to be materialized due to the
presence of shortcuts between non-bottleneck tensors.

5. Implementation Notes
5.1. Memory efficient inference

The inverted residual bottleneck layers allow a partic-
ularly memory efficient implementation which is very
important for mobile applications. A standard effi-
cient implementation of inference that uses for instance

(a) NasNet[23]

input

Dwise 3x3,
stride=s, Relu6

conv 1x1, Relu6

(b) MobileNet[27]

(c) ShuffleNet [20] (d) Mobilenet V2

Figure 4: Comparison of convolutional blocks for dif-
ferent architectures. ShuffleNet uses Group Convolu-
tions [20] and shuffling, it also uses conventional resid-
ual approach where inner blocks are narrower than out-
put. ShuffleNet and NasNet illustrations are from re-
spective papers.

TensorFlow[31] or Caffe [32], builds a directed acyclic
compute hypergraph G, consisting of edges represent-
ing the operations and nodes representing tensors of in-
termediate computation. The computation is scheduled
in order to minimize the total number of tensors that
needs to be stored in memory. In the most general case,
it searches over all plausible computation orders Σ(G)
and picks the one that minimizes

M(G) = min
π∈Σ(G)

max
i∈1..n

⎡

⎣
∑

A∈R(i,π,G)

|A|

⎤

⎦+ size(πi).

where R(i,π, G) is the list of intermediate tensors that
are connected to any of πi . . .πn nodes, |A| represents
the size of the tensor A and size(i) is the total amount
of memory needed for internal storage during operation
i.

For graphs that have only trivial parallel structure
(such as residual connection), there is only one non-
trivial feasible computation order, and thus the total
amount and a bound on the memory needed for infer-
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parameters, faster speed and higher precision. Therefore, less parameters do not necessarily 

represent The model is fast and accurate. In this regard, Face++ proposed ShuffeNet V2 

replaces indirect evaluation indicators (such as FLOPS) with direct indicators (operation speed) 

and evaluates them in mobile terminals such as ARM. Based on reducing the amount of 

calculations, four principles are proposed: 

l Increase the amount of calculation of convolution using different input and output channel 

widths; 

l Reduce the group convolution increases the MAC; 

l Use multi-branch to reduce computational efficiency; 

l Use element level operations to increase the amount of calculation. 

Figure 7 shows the differences between shuffleNet and shuffleNet V2 (a) ShuffleNet base unit; 

(b) ShuffleNet unit for spatial downsampling (2×); (c) basic unit for ShuffleNet V2; (d) 

ShuffleNet V2 unit for space Sampling (2×). 

 

 

Fig. 7. The differences between shuffleNet and shuffleNet V2(34). 
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Chapter 3: Design and Implementation 

Normally there will be a part about the design and implementation of the system, especially for 

an implementation project. However, every project has its unique phases so you should talk to 

your supervisor about it. 

3.1 Lightweight Model Strategy 

In most classic light weight models, they achieve our purpose by replacing the standard 

convolution into some special convolution methods. This program will utilize some 

convolution methods as part of the whole models. Then comparing them with experiments. 

3.1.1 Depthwise separable convolution 

MobileNet is one of the classic lightweight model and the main innovation in MobileNet is 

Depthwise separable convolution (31). It is a special convolutional method, it has two steps: 

depthwise convolution and pointwise convolution which is showed in figure 8. In the first step, 

deep convolution is equipped with a separate filter for each input channel. Then, the pointwise 

convolution combines the results of the previous step with a 1 × 1 convolution. Standard 

convolution can filter in one step and combine the inputs into a new set of outputs, while 

deepwise separable convolution divides it into two layers: one for filtering and one for 

combining.  

This structure has the effect of significantly reducing the computation and model size. Consider 

a feature map with M × Win × Hin (Win and Hin are spatial width and height of the input, M is 

the input depth) as input and a N × Wout × Hout (Wout and Hout are spatial width and height 

of the output, N is the output depth) as output. The convolution kernel is of size K × K. For 

standard convolution, the computational cost : 

 !"#$%&'(&')*+,- (1) 

 

The multiplying Relationship between there parameters produces huge budgets. To address 

such problems, the depthwise separable convolutions which factorize the standard one into a 

depthwise convolution and a 1 ×1 convolution named pointwise convolution was proposed as 

the basic block of MobileNet. We can see it in Fig. 8(b). This technique apply a single filter for 

every input channel as depthwise convolution operation. In spite that this operation is extremely 
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more efficient, it also breaks the interaction between different channels. So, the pointwise 

convolutions combine them to generate new 2-D features.  

To compare, for depthwise Separable convolutions, the computational cost is:  

 (!"#%&'(&' + #$%&'(&'))*+,- (2) 

 

The cost and parameters of the depthwise separable convolution are 9 times less than the 
standard convolution If we assume K = 3 and the number of channels is 100. 

 

 

(a) Standard Convolution Filters 

 

(b) Depthwise Convolutional Filters 
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(c)Pointwise Convolution 

Figure 8. (a) The standard convolutional filters, (b) depthwise convolution, (c) pointwise 

convolution(31) 

3.1.2 Group Convolution 

Although the above structure can effectively reduce the amount of calculation, it still takes a 

long time to perform pointwise convolution. To reduce this problem, the project use a group 

convolution similar to shuffleNet (33), which divides the different channels into different 

groups and then performs convolution operations in separate groups.  

Consider g as the number of groups, them the computation cost will reduce g time in each 

bottleneck as it’s showed in figure 9.  

 

Figure 9. the process of group convolution 

3.1.3 Channel shuffle 

Group convolution will blocks the connection between different channels. Therefore, this 

project use the "channel shuffling" operation. It achieves the effect of increasing the connection 
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between the channels by shuffling the components from different channels as it is showed in 

figure 10. 

 

Figure 10. the process of channel shuffle(33) 

 

3.1.4 Channel Split and Concatenation 

Most models will utilize shortcut block to increase connection between two convolution process. 

However, most of them use “add” method to connect two shortcut part. This project replace 

“add” method to “concat” method. At the begin of shortcut block, input channel will be split 

into two part and then do convolution process separately. After that, two part will be 

concatenated together as it is showed in figure 11. Compared to “add” method, “concat” method 

will reduce two time computation cost.   

Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and
output channels are fully related when GConv2 takes data from different groups after GConv1; c) an equivalent implementation to b) using
channel shuffle.

cent work [46] employs reinforcement learning and model
search to explore efficient model designs. The proposed
mobile NASNet model achieves comparable performance
with our counterpart ShuffleNet model (26.0% @ 564
MFLOPs vs. 26.3% @ 524 MFLOPs for ImageNet clas-
sification error). But [46] do not report results on extremely
tiny models (e.g. complexity less than 150 MFLOPs), nor
evaluate the actual inference time on mobile devices.

Group Convolution The concept of group convolution,
which was first introduced in AlexNet [21] for distribut-
ing the model over two GPUs, has been well demon-
strated its effectiveness in ResNeXt [40]. Depthwise sep-
arable convolution proposed in Xception [3] generalizes the
ideas of separable convolutions in Inception series [34, 32].
Recently, MobileNet [12] utilizes the depthwise separa-
ble convolutions and gains state-of-the-art results among
lightweight models. Our work generalizes group convolu-
tion and depthwise separable convolution in a novel form.

Channel Shuffle Operation To the best of our knowl-
edge, the idea of channel shuffle operation is rarely men-
tioned in previous work on efficient model design, although
CNN library cuda-convnet [20] supports “random sparse
convolution” layer, which is equivalent to random channel
shuffle followed by a group convolutional layer. Such “ran-
dom shuffle” operation has different purpose and been sel-
dom exploited later. Very recently, another concurrent work
[41] also adopt this idea for a two-stage convolution. How-
ever, [41] did not specially investigate the effectiveness of
channel shuffle itself and its usage in tiny model design.

Model Acceleration This direction aims to accelerate in-
ference while preserving accuracy of a pre-trained model.
Pruning network connections [6, 7] or channels [38] re-
duces redundant connections in a pre-trained model while
maintaining performance. Quantization [31, 27, 39, 45, 44]
and factorization [22, 16, 18, 37] are proposed in litera-
ture to reduce redundancy in calculations to speed up in-
ference. Without modifying the parameters, optimized con-
volution algorithms implemented by FFT [25, 35] and other
methods [2] decrease time consumption in practice. Distill-
ing [11] transfers knowledge from large models into small
ones, which makes training small models easier.

3. Approach
3.1. Channel Shuffle for Group Convolutions

Modern convolutional neural networks [30, 33, 34, 32,
9, 10] usually consist of repeated building blocks with the
same structure. Among them, state-of-the-art networks
such as Xception [3] and ResNeXt [40] introduce efficient
depthwise separable convolutions or group convolutions
into the building blocks to strike an excellent trade-off
between representation capability and computational cost.
However, we notice that both designs do not fully take the
1 × 1 convolutions (also called pointwise convolutions in
[12]) into account, which require considerable complex-
ity. For example, in ResNeXt [40] only 3 × 3 layers are
equipped with group convolutions. As a result, for each
residual unit in ResNeXt the pointwise convolutions occupy
93.4% multiplication-adds (cardinality = 32 as suggested in
[40]). In tiny networks, expensive pointwise convolutions
result in limited number of channels to meet the complexity
constraint, which might significantly damage the accuracy.

To address the issue, a straightforward solution is to ap-
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Figure 11. (a) traditional shortcut method. (b) shortcut method in this project. 

 

3.2 Construct the Model 

3.2.1  Basic Shortcut Convolutional Block 

Figure 12 shows the basic block in this project, which is modified from ShuffleNet unit. This 

block has two branches in figure. 5(a). Firstly, it started with a channel split to split channels 

from the former process into two parts which have equal channel number. After that the project 

utilizes a 1 × 1 pointwise group convolution and 3 x 3 depthwise convolution in one part. 

Between them, channel shuffle is used to increase the information exchange between different 

channel. Then, to make the channel number equal to another part, another pointwise group 

convolution is used. Specially, batch normalization[youyige] is used to solve the covariate shift 

problem, in each convolution layer. Additionnal, ReLU (35) method is used in each convolution 

part. 

 

part 2

add

(a)

part 1 part 2

concat

(b)

part 1

channel split
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1$(2) = max	(

2 − 9(2)

:;<=(2) + >
× @ + A, 0) 

(3) 

 

At last, dropout(proposed by Hintion [liu 35]) method is used to deal with the overfitting 

problem. 

 )(2) = D=EFEGH(IJ*K()LM&'(2) + 2)) (4) 

 

Fig. 12(b) shows down samples process by replacing the stride number from 1 to 2. At the same 

time, average pooling is used in another branch.  

 

Figure 12. (a)block with stride =1. (b)block with stride =2. 
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3.2.2 Channel Number and Group Number 

There are two parameters which will affect the computation cost and accuracy in this structure: 

channel number and group number in each block: the more the channel number, the high the 

accuracy, because it will extract more information of the picture. However, it will have more 

computation cost. And the situation for group number is just opposite. Because the more group 

number, the worse the information exchange between different channels.  

The project have determined the best channel number and group number for special database.  

3.3 Whole network structure 

Figure 6 shows the overall symmetrical framework for the project. This structure is similar as 

FCN. But we apply four shortcut process (the red part in figure 13) to increase the connection 

of information from encoder to decoder. The green part in figure 13 shows the decoder process, 

which can be written as follows: 

 )NOPQOP(2', 2'
R ) = 	)LM&'(2') +	)S&'T(2') + )

R(2'
R ) (5) 

 

 )R(2'
R ) = D=EFEGH(1$(IJ*KUVEWX(2'

R ,%)Y, @ = 0.5) (6) 

 

As a result , the softmax layer is used to transfer the last layer into classification maps. 

All sematic segmentation models in this project follows this structure. The main difference 

among them are the blocks( different models contain different contents ). Table 1 shows the 

detail in every part. Each parameter is determined by experiment. 
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Figure 13. whole structure for lightweight semantic segmentation 

 

Table 1.  Detail in this project 

128 x 128 x 3

block1 block2 block1max poolconvinput

encoders adddecoders

transpose convoutput transpose convtranspose convtranspose convtranspose conv

Layer name Output Size KSize Stride Repeat 

Original Image 128x128x3    

Conv1 

MaxPool 

64x64x24 

32x32x24 

3x3 

3x3 

2 

2 

1 

Stage2 16x16x100 

16x16x100 

 2 

1 

1 

3 

Stage3 8x8x200 

8x8x200 

 2 

1 

1 

7 

Stage4 4x4x400  2 1 
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3.4 Post Processing --- CRF 

Convolutional neural networks have achieved good results in solving semantic segmentation 

tasks. Although deep neural networks are effective in extracting local features and using small 

receptive fields for good prediction, they lack the ability to utilize global context information 

and cannot directly model the interaction between predictions. Therefore, this project uses 

DenseCRF (36) to establish a global information connection. 

There is a category label 2& for each pixel \. and a corresponding observation ]&. Thus each 

pixel point acts as a node, and the relationship between the pixel and the pixel acts as an edge, 

which constitutes a conditional random field. The category label xi corresponding to the pixel  

\.can be inferred by observing the variable ]&. The conditional random field results are shown 

in the figure: 

 

Figure 14. the structure for DenseCRF 

 

 

4x4x400 1 3 

Transpose Conv1 8x8x200 3x3 2 1 

Transpose Conv2 16x16x100 3x3 2 1 

Transpose Conv3 32x32x24 3x3 2 1 

Transpose Conv4 64x64x24 3x3 2 1 

Output Image 128x128x6 3x3 2 1 
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The conditional random field conforms to the Gibbs distribution: (where 2 is the observation 

value) 

 
,(^ = 2|`) = 	

1

b(`)
Jcd(e|f) 

(7) 

 

Where 9(2|`) is the energy functionq 

 

 

 9(2|`) = 	gΨO(2&) +gΨQU2&, 2iY
&ji&

 (8) 

 

The one-dimensional potential function ∑ ΨO(2&)&  is the output from the front-end FCN. The 

binary potential function is as follows: 

 
ΨQU2&, 2iY = G(2&, 2i) g lL!m

L(n&, ni)

o

Lpq

 
(9) 

 

The binary potential function is to describe the relationship between pixel points and pixel 

points, and encourage similar pixels to assign the same label, while pixels with larger 

differences assign different labels. The definition of this "distance" is related to the color value 

and the actual relative distance, so CRF can make the image split as much as possible at the 

boundary. 
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Chapter 4: Results and Discussion 

4.1 Overview 

The next past will show several experiments in two special database. And discuss them based 

on the result. 

The project is conducted on the TensorFlow deep learning framework. It took 4 hours on the 

two ISPRS VHR(Very High Resolution) image datasets on GPU GeForce GTX 1080. The aim 

of the experiments is to classify all the pixels in the digital orthophoto maps into six categories. 

The whole of our experiments are divided into two parts. In the first part, we describe our 

processes to find the best mini batch size, group numbers and stage channel numbers of the 

model in this project on Vaihingen dataset. Then contrast the model with some other models.  

The second part demonstrates the state-of-art performance of our network on Potsdam dataset. 

In the implementation, each model will keep training until no better result appear within 20 

epochs. To address the vanishing gradient problem in training process[Fig.15], we use Adadelta 

method(37) [38] because of its unique updating quality(decrease from 0.5 to 0). In addition, we 

set weight decay to 4e-5. Other hyper-parameters follows(38) [39]. The assessment metrics 

utilized in our experiments are overall accuracy(OA), kappa, model size, computation 

complexity(MAdds). 

 

Figure 15. Monitoring training of DSFCN. 

4.2 Experiments on Vaihingen dataset 

4.2.1 Data details  

The Vaihingen dataset[Fig. 16(a)-(c)] contains three spectral bands: red (R), green (G), and near 
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infrared (IR). In our training process, we only utilize digital orthophoto maps(DOMs) without 

digital surface models(DSMs). Among the DOMs, we use ID 1, 5, 7, 13, 15, 17, 21, 23, 28, 

32,34, 37 as training data and ID 3, 11, 26, 30 as validation. Then we sliced these data into the 

images with a shape of 128 × 128 × 3 and each two adjacent small training images have 64% 

overlap. In addition, we also flip our original data horizontally and vertically to increase the 

training data. As a result, 23474 patches exist as training dataset and 1023 patches are used as 

validation dataset. 

 

Figure 16. (a) Tile 33 in Vaihingen dataset. (b)Ground truth. (c) Vaihingen dataset. (d)Tile 3-

12 in Potsdam. (f)Ground truth. (e)Potsdam dataset. 

 

 

4.2.2 Minibatch size 

In this part, to find the relationship between batch size and performance, our model is evaluated 

with different batch size while the group number is 1 and stage channels are 100, 200, 400. The 

Validation OA, Validation Kappa and Training OA are listed in Table 2. The result indicates that 

under the same settings, our framework with batch size 5 have a better performance on 

(a)  

(d)  

(c)  

(e)  

(b)  

(f)  

building low vegetationtreebackground impervious surfacescar
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validation datasets, although it may not perform best on training datasets. 

 

Table 2. Accuracy assessment of different batch size on Vaihingen dataset. Group number =1, 

Stage depth = 100,200,400. Without CRF 

 

 

4.2.3 Group number 

when group number is larger, this model with channel shuffle perform better than the 

counterparts. In this part, to get the best result, we evaluate the model with different group 

numbers(1,2,4,8) on constant condition that batch size is 5 and stage channels are 100,200,400. 

The complete results are exhibited in Table 3. It shows that when choosing the group number 

as 1, the performance outperform others both in accuracy and model size. That is because 

models with other group numbers block the process of information and representation flowing 

between channel groups. 

 
 
 
 

Minibatch Size Validation OA Validation Kappa Training OA 

3 0.84762 0.79321 0.88315 

4 0.84631 0.79117 0.87212 

5 0.85141 0.80209 0.90681 

6 0.84266 0.78535 0.87978 

10 0.84465 0.78908 0.89839 

15 0.83845 0.78472 0.92140 

20 0.84103 0.78853 0.92631 

25 0.83944 0.78591 0.87832 

30 0.83391 0.77865 0.88941 

35 0.83830 0.78439 0.89267 
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Table 3. Accuracy assessment of different group numbers on Vaihingen dataset. Batch size = 

5, Stage depth = 100,200,400. Without CRF 

 

4.2.4 Stage depth 

As Section 3 mentions, the stage depth plays a key role in the memory and computation 

complexity. In order to find the best depth which can achieve relatively small model size and 

maintain accurate, we adapt our experiment with three different depths while the batch size is 

5 and group number is 1. The result in Table 4 indicates that as the stage depth goes deeper, its 

relatively size will be larger. Moreover, the Validation OA, Kappa and Training OA of Stage 

depth with 100, 200, 400 perform best accuracy while maintain a relatively small model size.  

 

Table 4. Accuracy assessment of different stage depth on Vaihingen dataset. Batch size = 5, 

Group number = 1. Without CRF 

 

4.2.5 CRF Effect 

Table 5 shows the effect of CRF. When adding CRF as post process, the accuracy can be 

improved. Fig 17 shows two examples. It is obvious that CRF can make the image split as much 

Group Number Validation OA Validation Kappa Training OA Model Size 

1 0.85141 0.80209 0.90681 17.2MB 

2 0.84583 0.79474 0.87913 19.3MB 

4 0.84656 0.79565 0.87608 23MB 

8 0.83838 0.78457 0.87408 29.4MB 

CNN depth Validation OA Validation kappa Training OA Model Size 

72_144_288 0.84545 0.79412 0.88167 14.2MB 

100_200_400 0.85141 0.80209 0.90681 17.2MB 

256_384_512 0.85131 0.80192 0.90169 27MB 

384_768_1536 0.85231 0.80301 0.90935 130.1MB 
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as possible at the boundary. 

 

Table 5. CRF effect on Vaihingen dataset. Batch size = 5, Group number = 1. Stage depth = 

100,200,400 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 17. CRF effect example:(a) real picture. (b)Ground truth. (c) result without CRF. 

(d)result with CRF. 

4.2.6 Comparison experiments 

To emphasize our superiority, we compare our model with another lightweight net: MobileNet. 

It’s the same to our model except that the down-sampling layers are replace. Meanwhile, we 

train U-Net as comparison. The results are listed in Table 6. It is important to notice that our 

Model with Depthwise Separable Convolution Blocks achieve slightly better accuracy than 

(a) (c)(b) (d)

building low vegetationtreebackground impervious surfacescar

 Validation OA Validation kappa Training OA 

With CRF 0.87145 0.82214 0.92167 

Without CRF 0.85231 0.80301 0.90935 
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SegNet with much less model size and MAdds, which means the pointwise group and 

Depthwise convolutions help to improve networks’ performance. In addition, as comparison to 

Mobile_FCN, it shows that bottleneck in our model makes great contribution to reduce 

complexity and shortcut block produces better accuracy. 

 
Table 6. Metrics of comparison experiments with different models on Vaihingen dataset. 

 

 

4.2.7 Output visualization 

For the purpose to access the output label more obviously and directly, we list four examples 

of output images in Fig. 18. In addition, our detail semantic segmentation results on Vahingen 

dataset are exhibited in Table 7. Among the integrated result, building, low vegetation and 

impervious surfaces possess better accuracy. However, we found some regions labelled with 

trees are misclassified to cars. Meanwhile, cars are also confused with trees. 

 

Table 7. The result on Vaihingen dataset. 

 

Model Validation OA Validation Kappa Training OA Model Size 

U-Net 0.8767 0.8323 0.9290 117.8MB 

Mobile_FCN 0.8594 0.7867 0.9058 42.3MB 

Our model 0.87145 0.82214 0.92167 17.2MB 

Reference/Pre
dicted 

Building Background Tree Low 
Vegetation 

Car Surfaces 

Building 0.9227 0.0021 0.0045 0.0206 0.0072 0.0426 

Background  0.1271 0.0012 0.0253 0.0004 0.0321 0.8389 

Tree 0.0051 0.0004 0.8388 0.1343 0.0051 0.0159 

Low 
vegetation 

0.0228 0.0013 0.1394 0.7805 0.0072 0.0486 

Car 0.0255 0.0003 0.0017 0.0169 0.7483 0.207 

Surfaces 0.0555 0.0017 0.0162 0.0516 0.0342 0.8404 
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Figure 18. Example output on Vaihingen data. (a) Original image. (b) Ground Truth. (c) 

Mobile_FCN. (d) U-Net. (d) model in this project. 

 

4.3 Experiments on Potsdam dataset 

In order to demonstrate the generalization of our architecture, we compare our DSFCN with 

FCN-8s, SegNet and Mobile_FCN on Potsddam dataset.  

4.3.1 Data details 

The Potsdam dataset contains three spectral bands[Fig. 16(d)-(f)]: red (R), blue (B), green (G) 

and near infrared (IR). Among the DOMs, we use 18 image tiles as training data and 6 tiles as 

validation (the same setting as (39)). Then, we sliced these data into the images with a shape of 

128 × 128 × 3. In total, 38088 patches exist as training dataset and 12696 patches are used as 

validation dataset. 

4.3.2 Comparison experiments 

The training result is listed in Table 8 and Table 9. We find that DSFCN can got better accuracy 

than SegNet and Mobile_FCN. Meanwhile, it maintain the least memory and computation cost. 

(a) (c)(b) (e)(d)

building low vegetationtreebackground impervious surfacescar
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The results again demonstrate that the model in this project with depthwise separable 

convolutions possesses the best performance. The result in Table 9 indicates that different from 

the result in Vaihingen dataset, there is no confusion between cars and trees. However, trees and 

vegetation are still misclassified probably. 

 
Table 8. Metrics of comparison experiments with different models on Potsdam dataset. 

 
 

 

 
 
 

 
 

Table 9. The result on Vaihingen dataset. 

 

Model Validation OA Validation Kappa Training OA 
U-Net 0.8269 0.7615 0.8569 
Mobile_FCN 0.8200 0.7487 0.8203 
My model 0.8256 0.7596 0.8559 

Reference/Pre
dicted 

Building Background Tree Low 
Vegetation 

Car Surfaces 

Building 0.8834 0.0171 0.0053 0.0094 0.0089 0.0756 

Background  0.4336 0.2002 0.0106 0.0341 0.0424 0.2788 

Tree 0.0119 0.0083 0.6757 0.2325 0.0046 0.0667 

Low 
vegetation 

0.0574 0.0163 0.0745 0.7443 0.0065 0.1007 

Car 0.0102 0.0628 0.0249 0.0056 0.81 0.0862 

Surfaces 0.0549 0.0191 0.0231 0.0241 0.0162 0.8623 
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Chapter 5: Conclusion and Further Work 

In this paper, I established a lightweight semantic segmentation architecture. Our new model 

integrates depthwise separable convolutions and Encoder-Decoder style. According to the 

experiments on ISPRS Vaihingen and Potsdam datasets, I proved that my model is more 

efficient than the classical and U-Net. What’s more, in the comparison experiments with 

Mobile_FCN, the result demonstrates that our residual block makes a great contribution to 

improve the accuracy, reduce the memory and computation cost. In the future, we will work on 

to implement the following trials:  

1. I will run our network in embedded device to access its performance and practicability. 
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